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Introduction

• In this topic, we will

– Describe approximating Au = v when no exact solution 
exists

– Introduce the normal equation

– Use the normal equation to find the

• Best-fitting linear polynomial that fits noisy data

• Best-fitting quadratic polynomial that fits noisy data
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Review

• From linear algebra:

– Suppose  that A:R2 → R4 and Au = v has no solution

– If the columns of A are linearly independent,
this requires that the system is overdetermined with rank 2

• That is, there are more equations than unknowns and the 
system is inconsistent
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Review

• From linear algebra:

– A simple example:

– The first two rows indicate that u1 = u2 = 1

– In this case, however,  2u1 + 3u2 = 5, and not 8

– Thus, this system of three linear equations in two unknowns 
is inconsistent

• No solution exists
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Review

• Thus, it is almost certain that no linear combination of the 
columns of A that equals the target vector

– Thus, for all u1 and u2,

• What’s the next-best choice?

– How about, what linear combination is closest to v?
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Review

• Let A:U→V be a linear map

– Usually, A: Rn → Rm

• Thus, we want to minimize

– That is, find a u that makes this as small as possible

– Now, consider a plane (e.g., a floor) and a point not on that 
plane

• The location on the plane closest to the point is one that 
forms a perpendicular line

– We need to find a vector u0 such that Au0 – v is 
perpendicular to all vectors in the range of Au

• Two vectors are perpendicular if their dot product is zero
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Review

• Thus, we require that

for all u in the domain Rn

– If this is true, then

must be true for all u in Rn

– This is true if and only if  
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Review

• Therefore, the solution u0 to

which may sometimes be calculated as 

is that vector u0 that minimizes 
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Review

• Let’s try this out:
>> A = [3.1 4.0; 2.8 7.6; 5.9 1.2; 6.4 8.7];

>> v = [5.6 0.8 7.3 9.1]';

>> u = (A'*A) \ A'*v

u =

1.472633619403234

-0.169731501459659

>> A*u

ans =

3.886238214311391

2.833414723235649

8.484860552727493

7.948191101481669

>> norm( A*u - v )

ans =

3.130864603088711
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Least-squares best-fitting linear polynomial

• Suppose we have some data points

– If there were only two points, we could solve

– Now, however, we have five:
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Least-squares best-fitting linear polynomial

• We proceed by asking:

– What linear combination                               comes closest to

our target vector
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Least-squares best-fitting linear polynomial

• We have already seen the solution:

– Solve 
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Least-squares best-fitting linear polynomial

• We have already seen the solution:

– Solve 
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Least-squares best-fitting linear polynomial

• The solution gives us the best-fitting line

– The sum of the squares of the errors is minimized
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Example

• Let’s try this in MATLAB

>> x = [1.32 2.54 5.43 6.35 8.21]';

>> y = [2.35 2.58 3.87 4.02 5.53]';

>> plot( x, y, 'ro' )

>> A = vander( x, 2 )

A =

1.3200   1.0000

2.5400   1.0000

5.4300   1.0000

6.3500   1.0000

8.2100   1.0000

>> format long

>> a = (A'*A) \ (A'*y)

a =

0.444616162573875

1.549180904522615

>> hold on

>> plot( x, polyval( a, x ), 'r' );
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This Matlab code is provided for 
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Least-squares best-fitting
quadratic polynomial

• Suppose we have some data points

– If there were three points, we could solve

– Now, however, we have five:
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Least-squares best-fitting
quadratic polynomial

• We proceed by asking:

– What linear combination                                                 comes

closest to
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Least-squares best-fitting
quadratic polynomial

• As before, we can solve this:

– Solve 
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Least-squares best-fitting
quadratic polynomial

• As before, we can solve this:

– Solve 
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Least-squares best-fitting
quadratic polynomial

• The solution gives us a quadratic curve
that most closely approximates these points

– The sum of the squares of the errors is minimized
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Example
• Let’s try this in MATLAB

>> x = [1.32 2.54 5.43 6.35 8.21]';

>> y = [2.35 2.58 3.87 4.02 5.53]';

>> plot( x, y, 'ro' )

>> A = vander( x, 3 )

A =

1.7424   1.32   1

6.4516   2.54   1

29.4849   5.43   1

40.3225   6.35   1

67.4041   8.21   1

>> format long

>> a = (A'*A) \ (A'*y)

a =

0.04547642859987164

0.02113915928445630

2.246661642457417

>> hold on

>> xs = 1:0.01:8.5;

>> plot( xs, polyval( a, xs ), 'r' );
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Example

• Incidentally, in MATLAB if you try to solve an overdetermined 
system of linear equations, it automatically gives you the least-
squares best-fitting solution:

>> a = (A'*A) \ (A'*y)

a =

0.04547642859987164

0.02113915928445630

2.246661642457417

>> a = A \ y

a =

0.04547642859987018

0.02113915928447047

2.246661642457392
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Least-squares best-fitting
constant polynomial

• What is the best constant polynomial y = a0 passing through 
data?
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Least-squares best-fitting
constant polynomial

• What is the best constant polynomial y = a0 passing through 
data?

– The solution is 
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Summary

• Following this topic, you now

– Understand the idea of finding the solution such that Au is
closest to a target vector v

– Know that this requires you to solve ATAu = ATv

– Understand that this can be used to find least-squares best-fitting 
polynomials passing through data

• We can find a least-squares constant polynomial,
least-squares linear polynomial, 
least-squares quadratic polynomial and others
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Colophon 

These slides were prepared using the Cambria typeface. Mathematical equations 
use Times New Roman, and source code is presented using Consolas.  
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and 
accenting the top of each other slide were taken at the Royal Botanical Gardens in 
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.
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Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.
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